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1 Introduction

By now it is famous that it is very difficult to construct a quantum theory of Einstein’s

general relativity in four dimensions because of nonrenormalizability. The nonrenormaliz-

ability is traceable to the fact that its perturbative expansion parameter is the Einstein’s

gravitational constant κ with dimension of length squared. Thus, the divergences encoun-

tered in the perturbation theory of Einstein’s gravity are totally out of control and we have

no physically meaningful prediction on the basis of perturbative quantum gravity.

There is, however, an obvious renormalizable generalization of Einstein’s general rela-

tivity in four dimensions, which is the ’higher derivative gravity’ theory with higher deriva-

tive curvature terms [1], but this theory is known to be non-unitary owing to the presence

of the non-unitary massive ghost , unfortunately.

With such a situation, it has been anticipated for a long time that this problem might

be cured by going to lower space-time dimensions, but it is remarkable to recall that we

have not yet had grasp of perturbative quantum gravity, which is dynamical, unitary and

possibly power-counting renormalizable, even in the lower dimensions.

To date, there is only one candidate as known exceptions to this picture, which is, what

we call, topologically massive gravity in three dimensions [2, 3]. This geometrical gravita-

tional theory is power-counting renormalizable despite being dynamical, unitary and includ-

ing a dimensional coupling constant like Einstein’s gravity in four dimensions. However,

even this hopeful theory has a flaw in the proof of renormalizability in the sense that there is

no gauge-invariant regularization in such a way to preserve the desirable power-counting be-

havior. Related to this fact, note that dimensional regularization cannot work well because

of the explicit Levi-Civita tensor density εµνρ, gauge-invariant, higher derivative regulators

spoil the arguments of formal renormalizability, non-covariant cutoffs cannot be easily an-

alyzed, and non-local regularization method involves some assumption to be proved [4, 5].

Recently, in three space-time dimensions there has been an interesting progress for

obtaining a sensible interacting massive gravity theory [6].1 This model has been shown

1See the references [7–15] for alternative massive gravity models.
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to be equivalent to the Pauli-Fierz massive gravity [16] at the linearized approximation

level and thus massive modes of helicities ±2 are physical propagating modes. A key

idea in this model is that one adds higher derivative curvature terms to the Einstein-

Hilbert action with the wrong sign in such a way that the trace part of the stress-energy

tensor associated with those higher derivative terms is proportional to the original higher

derivative Lagrangian. With this idea, it turns out that the scalar mode coming from

higher derivative Lagrangian is precisely cancelled out [17]. More recently, this new massive

gravity model in three dimensions has been studied from various viewpoints such as the

unitarity and the impossibility of generalization to higher dimensions [18], relation to the

Pauli-Fierz mass term [17], the AdS black hole solutions [19], the properties of linearized

gravitational excitations in asymptotically AdS space-time [20–22] and AdS waves [23].

The aim of this article is to show that the new massive gravity theory in three di-

mensions [6] is indeed renormalizable within the framework of perturbation theory. It is

worhtwhile to notice here that we can make use of dimensional regularization in the new

massive gravity theory since there is no the Levi-Civita tensor density εµνρ in the action,

which should be constrasted to the case of the topologically massive gravity.

The reason why the new massive gravity is renormalizable is very simple. With a

suitable choice of the regulator and gauge condition for diffeomorphisms, the graviton

propagator falls off like 1
p4 , implying that the gravitational field has the ultraviolet dimen-

sion of (mass)−
1

2 . Then, the power counting argument together with the Slavnov-Taylor

identity and renormalization equation for the effective action shows that the divergent

part of the effective action consists of terms of dimension 3 at most and is invariant un-

der diffeomorphisms. Thus, only the admissible counter-terms are the cosmological term

and the Einstein-Hilbert action, and thereby the theory is perturbatively renormalizable.

Note that the higher derivative curvature-squared terms receive no corrections so that

the property of the unitarity in the new massive gravity is not violated even after the

renormalization procedure.

Since it has been already shown that this massive gravity is unitary, we have for the first

time a physically plausible quantum theory of gravity within the framework of perturbation

theory such that it is dynamical, renormalizable and unitary although this theory can be

formulated only in three dimensions.

In the next section, we perform the BRST quantization of the new massive gravity

theory in three dimensions. In the third section, we derive the propagator for the gravita-

tional field on the basis of the gauge fixed, BRST-invariant action obtained in the section 2.

In the fourth section, we consider the power-counting and determine the divergent part of

the effective action by using the Slavnov-Taylor identity and the renormalization equation.

The final section is devoted to conclusion and discussions.

2 BRST quantization of the new massive gravity theory

We start with BRST quantization of the new massive gravity theory in three dimensions [6]

which is an interactive and unitary theory with higher derivative terms for the massive

– 2 –
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graviton. The classical action which we consider is of form:2

Sc =

∫

d3xLc

=

∫

d3x
1

κ2

√−g

[

−R +
1

M2

(

RµνR
µν − 3

8
R2

)]

, (2.1)

where κ2 ≡ 16πG (G is the 3-dimensional Newton’s constant) and M is a constant of mass

dimension. Let us note that κ has dimension of (mass)−
1

2 , so the theory defined by the

action (2.1) might at first sight appear to be unrenormalizable. As usual let us write

gµν = ηµν + κhµν , (2.2)

where a flat Minkowski background ηµν has the diagonal element (−1, 1, 1). With this def-

inition, the gravitational field hµν has canonical dimension of (mass)
1

2 . Consequently, the

Einstein-Hilbert action and the graviton-matter interaction terms have canonical dimen-

sions greater than three, which is the origin of unrenormalizability of Einstein’s general

relativity without the higher derivative terms. Later, we will see that the gravitational

field hµν has ultraviolet dimension of (mass)−
1

2 , whose fact leads to renormalizability of

the new massive gravity theory under consideration.

Now the BRST transformations for the metric tensor, ghost, antighost and Nakanishi-

Lautrup auxiliary field are respectively given by

δBgµν = −κ3(∇µcν + ∇νcµ),

δBcµ = −κ3cν∂νc
µ,

δB c̄µ = ibµ,

δBbµ = 0, (2.3)

where the covariant derivative is defined as usual by ∇µcν = ∂µcν − Γλ
µνcλ with the affine

connection Γλ
µν . It is straightforward to prove that the BRST transformations (2.3) are

off-shell nilpotent.

Next, we wish to fix the gauge invariance by some suitable gauge fixing condition.

The usual gauge fixing condition would be the de Donder’s gauge (or its higher derivative

generalizations) because it is known that the renormalization procedure becomes extremely

simple in this gauge as first pointed out by Stelle [1]. However, it turns out that only the de

Donder’s gauge does not work well in the present theory owing to the scalar mode whose

propagator does behave as 1
p2 unlike 1

p4 for large momenta.

It is clear that this scalar mode is nothing but the conformal mode stemming from

the Einstein-Hilbert action since the conformal mode from the higher derivative curvature

terms is exactly cancelled out by a specific combination of them. The similar situation

has been already happened in the case of the topologically massive gravity theory where

there exists the conformal mode only from the Einstein-Hilbert action since the gravita-

tional Chern-Simons term, which is of higher-derivative nature, is conformally invariant

2The space-time indices µ, ν, . . . run over 0, 1, 2. We take the metric signature (−,+, +) and follow the

notation and conventions of the textbook of MTW [24].
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so that there is no conformal mode in this term [4]. Indeed, the existence of the scalar

mode has also caused some trouble in the proof of renormalizability in the topologically

massive gravity theory. However, at the linearized level the new massive gravity is shown

to be equivalent to the Pauli-Fierz massive gravity with only the spin ±2 massive graviton

modes without the scalar mode by path integral,3 so the troublesome scalar mode might

be somewhat an artificial degree of freedom.

In order to resolve this problem associated with the propagator for the scalar mode,

we shall obey the following line of the argument. First, the key observation is to recall that

provided that we add the Pauli-Fierz mass term

LPF = −m2

4
(hµνhµν − h2), (2.4)

to the action (2.1), we have no propagator for the scalar mode while the propagator for

the massive gravitational modes of helicities ±2 falls off like 1
p4 for large momenta [17]

as desired. However, if we simply added the Pauli-Fierz mass term to the action (2.1)

without care, the BRST invariance would be broken by the additional term and as a result

the unitarity would be violated whose situation we have to avoid from physical fundamental

principle. Moreover, it is obvious that addition of the the Pauli-Fierz mass term would

modify the physical content of the original theory.

Accordingly, we shall add the Pauli-Fierz mass term to the action (2.1) as some (in-

frared) regulator (which means that we take the vanishing mass limit after renormalization)

in a BRST-invariant manner. Such a BRST procedure has been already studied from a

different interest [25], but the method turns out to be applicable to the present problem as

well. Using the BRST procedure in ref. [25], it is easy to obtain the following gauge fixed,

BRST-invariant action

S ≡
∫

d3xL

=

∫

d3x

[

1

κ2

√−g

{

−R +
1

M2

(

RµνRµν − 3

8
R2

)}

+
1

κ3
g̃µν∂µbν

+i∂µc̄νD
µν
ρ cρ − m2

4
(hµνhµν − h2) − 1

4
F 2

µν − 1

κ2
b∂µAµ

− (∂νhµν − ∂µh)(mAµ − ∂µϕ) − ic̄(�c − m∂µcµ)

]

, (2.5)

where we have defined g̃µν =
√−ggµν , D

µν
ρ = g̃µσδν

ρ∂σ + g̃νσδ
µ
ρ ∂σ − g̃µν∂ρ − (∂ρg̃

µν) and

Fµν = ∂µAν −∂νAµ. Furthermore, in order to get the BRST symmetric theory, the Steuck-

elberg fields Aµ and ϕ, and the new ghost c, the corresponding antighost c̄ and Nakanishi-

Lautrup field b are introduced. In addition to eq. (2.3), the BRST transformations for

3But there has not yet been the proof of this statement by canonical formalism.

– 4 –



J
H
E
P
0
5
(
2
0
0
9
)
0
6
4

them are given by

δBAµ = κ2(−mcµ + ∂µc),

δBϕ = κ2mc,

δB c̄ = ib,

δBb = δBc = 0, (2.6)

where note in particular that we can set δ2
BAµ = 0 since δ2

BAµ = κ5mcν∂νc
µ belongs to

the higher-order in κ.

At this stage, we should comment on the meaning of the above action (2.5) in detail.

As the gauge fixing conditions of diffeomorphisms and Steuckelberg-like gauge symmetry,

we have selected the de Donder’s gauge ∂µg̃µν = 0 and the Landau-like gauge ∂µAµ = 0.

Then, the terms containing the fields Aµ, ϕ, b, c and c̄ are only quadratic in fields and

therefore there are no interaction terms among them. In obtaining the propagators, off-

diagonal pieces such as < bµhνρ >, < bAµ > and < hµνAρ > are therefore irrelevant as bµ,

b and Aµ never appear in vertices.

As seen shortly in the next section, it will turn out that the propagator for the scalar

(conformal) mode does not exist in the action (2.5). Then, one asks ourselves where

one dynamical degree of freedom associated with the scalar mode has gone away since the

number of dynamical degrees of freedom never changes in perturbation theory. The answer

lies in the fact that there appears the propagator for the Steuckelberg field Aµ, which has

one dynamical degree of freedom owing to gauge invariance. In other words, because of the

BRST-invariant regulator the massless pole 1
p2 of the scalar mode is transferred to that of

the Steuckelberg field Aµ. This fact could be understood more clearly by taking the more

general gauge condition ∂µAµ − m
2 h = 0.

Finally, in the limit of m → 0, the action (2.5) reduces to the gauge fixed and BRST-

invariant theory of the original new massive gravity up to irrelevant non-interacting terms.

This limit must be taken after the whole renormalization procedure is completed.

3 Graviton propagator

On the basis of the gauge fixed, BRST-invariant action (2.5), we wish to derive the prop-

agator for the gravitational field hµν . To this end, it is useful to take account of the

spin projection operators in 3 space-time dimensions [1]. A set of the spin operators

P (2), P (1), P (0,s), P (0,w), P (0,sw) and P (0,ws) form a complete set in the space of second rank

symmetric tensors and are defined as

P (2)
µν,ρσ =

1

2
(θµρθνσ + θµσθνρ) −

1

2
θµνθρσ,

P (1)
µν,ρσ =

1

2
(θµρωνσ + θµσωνρ + θνρωµσ + θνσωµρ),

P (0,s)
µν,ρσ =

1

2
θµνθρσ,

P (0,w)
µν,ρσ = ωµνωρσ,

– 5 –
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P (0,sw)
µν,ρσ =

1√
2
θµνωρσ,

P (0,ws)
µν,ρσ =

1√
2
ωµνθρσ. (3.1)

Here the transverse operator θµν and the longitudinal operator ωµν are defined as

θµν = ηµν − 1

�
∂µ∂ν = ηµν − ωµν ,

ωµν =
1

�
∂µ∂ν . (3.2)

It is straightforward to show that the spin projection operators satisfy the orthogonality

relations

P (i,a)
µν,ρσP

(j,b)
ρσ,λτ = δijδabP

(i,a)
µν,λτ ,

P (i,ab)
µν,ρσP

(j,cd)
ρσ,λτ = δijδbcP

(i,a)
µν,λτ ,

P (i,a)
µν,ρσP

(j,bc)
ρσ,λτ = δijδabP

(i,ac)
µν,λτ ,

P (i,ab)
µν,ρσP

(j,c)
ρσ,λτ = δijδbcP

(i,ac)
µν,λτ , (3.3)

with i, j = 0, 1, 2 and a, b, c, d = s,w and the tensorial relation

[

P (2) + P (1) + P (0,s) + P (0,w)
]

µν,ρσ
=

1

2
(ηµρηνσ + ηµσηνρ). (3.4)

It is then straightforward to extract the quadratic fluctuations in hµν from each term

of the action (2.5) and express it in terms of the spin projection operators:

LEH ≡ √−gR

=
κ2

4
hµν

[

P (2) − P (0,s)
]

µν,ρσ
�hρσ,

LR2 ≡ √−gR2

= 2κ2hµνP (0,s)
µν,ρσ�

2hρσ,

LR2
µν

≡ √−gRµνRµν

=
κ2

4
hµν

[

P (2) + 3P (0,s)
]

µν,ρσ
�

2hρσ,

LPF ≡ −m2

4
(hµνhµν − h2)

= −m2

4
hµν

[

P (2) + P (1) − P (0,s) −
√

2(P (0,sw) + P (0,ws))
]

µν,ρσ
hρσ. (3.5)

Note that a salient feature of the specific combination of the higher derivative terms is the

disappearance of the spin projection operator corresponding to the spin 0 scalar mode:

√−g

(

RµνRµν − 3

8
R2

)

=
κ2

4
hµνP (2)

µν,ρσ�
2hρσ. (3.6)

– 6 –
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Using the relations (3.5) and (3.6), the quadratic part in hµν of the action (2.5) is

expressed in term of the spin projection operators like

S =

∫

d3x
1

2
hµνPµν,ρσhρσ, (3.7)

where Pµν,ρσ is defined as

Pµν,ρσ =

[

1

2

(

1

M2
�

2 − � − m2

)

P (2) − m2

2
P (1) +

1

2
(� + m2)P (0,s)

+
m2

√
2

(

P (0,sw) + P (0,ws)
)

]

µν,ρσ

. (3.8)

Then, the propagator for hµν is defined by

< 0|T (hµν(x)hρσ(y))|0 >= iP−1
µν,ρσδ(3)(x − y), (3.9)

where using the relations (3.3) and (3.4), the inverse of the operator P is easily calculated as

P−1
µν,ρσ =

[

2
1

M2 �2 − � − m2
P (2) − 2

m2
P (1) − � + m2

m4
P (0,w)

+

√
2

m2
(P (0,sw) + P (0,ws))

]

µν,ρσ

. (3.10)

This expression of the graviton propagator brings us a few important information.

First, let us recall that the spin 1 component projected by P (1) and the spin 0 ones by

P (0,w), P (0,sw), and P (0,ws) can be gauged away, whereas the spin 2 component projected

by P (2) and the spin 0 one projected by P (0,s) are physically relevant. One notable feature

of the propagator (3.10) is that there is no spin 0 component projected by P (0,s), which is

the reason why we have taken the Pauli-Fierz mass term as the regulator of the conformal

mode. Second, the propagator of the spin 2 massive graviton modes of helicities ±2 falls

off like 1
p4 for large momenta.

Finally, let us notice that as the result of addition of the Pauli-Fierz mass term, there

appear two massive poles in the sector of spin 2 graviton, which is of form

I ≡ 1

M2
�

2 − � − m2

=
1

M2
(� − ω+)(� − ω−), (3.11)

where ω± ≡ 1±
√

1+4( m
M

)2

2 M2, which are real numbers such that ω+ > 0, ω− < 0 [17]. As

examined in ref. [17], the presence of the negative pole ω− might seem to induce violation of

both unitarity and causality. But such a pathology now does not occur since in the m → 0

limit, the positive one of the two massive poles, ω+ remains a pole of massive graviton

while the other negative pole ω− changes to a harmless pole of massless graviton. In this

respect, it is worth mentioning that the original massive gravity theory has been already

shown to be unitary and causal in the de Donder’s gauge [18].

– 7 –
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4 Structure of the divergences

We now turn our attention to the analysis of structure of the divergences of the effec-

tive action. To this aim, let us first add sources Kµν (anti-commuting, ghost number

= −1, dimension = 3
2), Lµ (commuting, ghost number = −2, dimension = 1), Mµ (anti-

commuting, ghost number = −1, dimension = 1) and N (anti-commuting, ghost number =

−1, dimension = 1) for the BRST transformations of g̃µν , cµ, Aµ and ϕ to the action (2.5),

respectively:4

S̃ ≡
∫

d3xΣ̃

=

∫

d3x

[

L +
1

κ3
KµνδB g̃µν +

1

κ3
LµδBcµ +

1

κ3
MµδBAµ +

1

κ3
NδBϕ

]

=

∫

d3x

[

1

κ2

√−g

{

−R +
1

M2

(

RµνRµν − 3

8
R2

)}

+
1

κ3
g̃µν∂µbν +(Kµν + i∂µc̄ν)D

µν
ρ cρ

−m2

4
(hµνhµν − h2) − 1

4
F 2

µν − 1

κ2
b∂µAµ − (∂νhµν − ∂µh)(mAµ − ∂µϕ)

− ic̄(�c − m∂µcµ) − Lµcν∂νcµ +
1

κ
Mµ(−mcµ + ∂µc) +

m

κ
Nc

]

. (4.1)

Next, based on this action, let us consider the superficial degree of divergence for

1PI (one particle irreducible) Feynman diagrams. Then, it is convenient to introduce the

following notation: nR = number of graviton vertices with two derivatives, nR2 = number

of graviton vertices with four derivatives, nG = number of ghost vertices, nK = number

of K-graviton-ghost vertices, nL = number of L-ghost-ghost vertices, IG = number of

internal ghost propagators and IE = number of internal graviton propagators. Note that

the fields Aµ, ϕ, b, c and c̄ are free so we can exclude such the fields from the counting of

the superficial degree of divergence. Using this fact and the above notation, the superficial

degree of divergence for an arbitrary Feynman diagram γ can be easily calculated to be

ω(γ) ≡
∑

nidi + (3 − 4)IE + (3 − 2)IG − 3
(

∑

ni − 1
)

= 3 − nR + nR2 − nG − 2nK − 2nL − IE + IG, (4.2)

where di denotes the number of derivatives in the interaction terms. Here we have made

use of the fact that graviton propagator behaves like p−4 for large momenta as mentioned

in the previous section.

Furthermore, using the relation

2nG + 2nL + nK = 2IG + Ec + Ec̄, (4.3)

with the notation that Ec = number of external ghosts cµ and Ec̄ = number of external

antighosts c̄µ, eq. (4.2) is cast to the form

ω(γ) = 3 − nR − (IE − nR2) − 3

2
nK − nL − 1

2
Ec −

1

2
Ec̄. (4.4)

4Here for simplicity we have regarded g̃
µν as a basic gravitational field.
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However, as noticed before by Stelle [1], the graviton propagator vanishes when mul-

tiplied by the momenta pµ, so the terms with the de Donder’s gauge term ∂µg̃µν do not

connect with the graviton propagator, and thus we can neglect such the terms. Conse-

quently, since the dimension of the ghost and antighost is increased by 2, instead of (4.4),

the correct superficial degree of divergence is given by

ω(γ) = 3 − nR − (IE − nR2) − 3

2
nK − nL − 5

2
Ec −

5

2
Ec̄. (4.5)

The superficial degree of divergence (4.5) gives rise to some useful information. First,

since there is a relation IE ≥ nR2 for 1PI diagrams γ, we have

ω(γ) ≤ 3, (4.6)

which indicates that the bound on the superficial degree of divergence for 1PI diagrams

γ is cubic to all orders, and the theory is power-counting renormalizable. In this context,

it is worthwhile to point out that we can make use of the dimensional regularization in

evaluating various amplitudes if necessary.

Second, we can understand a convergent property of some 1PI Feynman digrams via

eq. (4.5). In order to describe this fact in the physical terminology, it is useful to define

the effective action Γ of this theory in a conventional way and expand it in a power series

of the loop number like

Γ = Γ(0) + Γ(1) + Γ(2) + · · · , (4.7)

where Γ(n) describes the n-loop part of the effective action. Moreover, we separate Γ(n)

into the divergent and finite parts like

Γ(n) = Γ
(n)
div + Γ

(n)
fin . (4.8)

Now notice that all the 1PI diagrams involving external ghosts or K-vertices or L-ones are

finite since, for instance, if nK = 1, we have Ec = 1, and thus eq. (4.5) leads to ω(γ) ≤ −1.

Hence, we can describe these convergent properties in terms of the divergent part of Γ(n) as

δΓ
(n)
div

δcσ
=

δΓ
(n)
div

δKµν

=
δΓ

(n)
div

δLµ

= 0. (4.9)

Next we move on to the Slavnov-Taylor identity. The BRST invariance of the ac-

tion (4.1) enables us to derive the Slavnov-Taylor identity for Σ̃ as follows:

0 = δBΣ̃

= κ3Dµν
ρ cρ δΣ̃

δg̃µν
− κ3cν∂νc

σ δΣ̃

δcσ
+ ibτ

δΣ̃

δc̄τ

+κ2(−mcµ + ∂µc)
δΣ̃

δAµ
+ κ2mc

δΣ̃

δϕ
+ ib

δΣ̃

δc̄
. (4.10)

With the help of relations

δΣ̃

δKµν

= Dµν
ρ cρ,

δΣ̃

δLσ

= −cν∂νc
σ,

δΣ̃

δMµ

=
1

κ
(−mcµ + ∂µc),

δΣ̃

δN
=

m

κ
c, (4.11)
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eq. (4.10) can be rewritten as

0 = δBΣ̃

= κ3 δΣ̃

δKµν

δΣ̃

δg̃µν
+ κ3 δΣ̃

δLσ

δΣ̃

δcσ
+ ibτ

δΣ̃

δc̄τ

+κ3 δΣ̃

δMµ

δΣ̃

δAµ
+ κ3 δΣ̃

δN

δΣ̃

δϕ
+ ib

δΣ̃

δc̄
. (4.12)

If we define Σ by

Σ = Σ̃ −
∫

d3x

[

1

κ3
g̃µν∂µbν − 1

κ2
b∂µAµ

]

, (4.13)

we can obtain the Slavnov-Taylor identity for Σ:

δΣ

δKµν

δΣ

δg̃µν
+

δΣ

δLσ

δΣ

δcσ
+

δΣ

δMµ

δΣ

δAµ
+

δΣ

δN

δΣ

δϕ
= 0, (4.14)

where we have made use of the equations of motion to the antighosts:

i∂µ
δΣ

δKµν
+

δΣ

δc̄ν
= 0,

iκ∂µ
δΣ

δMµ
+

δΣ

δc̄
= 0. (4.15)

Because at the zero-loop order we have a relation Γ(0) = Σ, it is expected that the

ST-identity for the effective action takes the same form as (4.14) where Σ is now replaced

with Γ. In fact, this statement can be easily verified. Thus we arrive at the the ST-identity

for the effective action

δΓ

δKµν

δΓ

δg̃µν
+

δΓ

δLσ

δΓ

δcσ
+

δΓ

δMµ

δΓ

δAµ
+

δΓ

δN

δΓ

δϕ
= 0. (4.16)

Let us recall that the ST-identity for the effective action naturally leads to the renor-

malization equation to the the divergent part Γ(n) of the effective action

GΓ
(n)
div = 0, (4.17)

where the operator G is defined as

G =
δΓ(0)

δKµν

δ

δg̃µν
+

δΓ(0)

δLσ

δ

δcσ
+

δΓ(0)

δMµ

δ

δAµ
+

δΓ(0)

δN

δ

δϕ

+
δΓ(0)

δg̃µν

δ

δKµν
+

δΓ(0)

δcσ

δ

δLσ
+

δΓ(0)

δAµ

δ

δMµ
+

δΓ(0)

δϕ

δ

δN
. (4.18)

Using the relations (4.9) and the obvious identities

δΓ
(n)
div

δAµ
=

δΓ
(n)
div

δϕ
=

δΓ
(n)
div

δMµ

=
δΓ

(n)
div

δN
= 0, (4.19)
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the renormalization equation becomes

0 = GΓ
(n)
div =

δΓ(0)

δKµν

δΓ
(n)
div

δg̃µν
= Dµν

ρ cρ δΓ
(n)
div

δg̃µν
. (4.20)

This renormalization equation clearly shows that Γ
(n)
div is a BRST-invariant functional of

g̃µν . Since the divergent part is local and of dimension 3 at most, the only possible form

of Γ
(n)
div reads

Γ
(n)
div =

∫

d3x[a(n)

√−g + b(n)

√−gR]. (4.21)

These divergences can be absorbed by renormalizing the Newton’s constant and adding the

cosmological constant’s counter-term. Of course, after renormalization, we take the limit

m → 0 and recover the new massive gravity theory up to irrelevant free terms.

In this way, we have completed the proof of renormalizability of the new massive

gravity theory in three dimensions. One important remark is that the higher deriva-

tive curvature-squared terms receive no quantum corrections since they have dimension of

(mass)4, thereby making it possible for the new massive gravity to make sense of even

after renormalization.

5 Discussions

In this article, we have presented a proof of renormalizability of a recently proposed new

massive gravity theory in three dimensions [6]. Our proof relies on the existence of the

BRST symmetry and the BRST-invariant infrared regulator.

Since it has been already shown that the new massive gravity theory is an interactive

and unitary theory for the massive gravitons of helicities ±2, our proof insists that this

theory is in addition renormalizable in the perturbation theory. Thus, we have obtained a

nontrivial toy model of perturbative quantum gravity.

A peculiar feature of our proof is that we have adopted the Pauli-Fierz mass term as

the (infrared) regulator. Then, a natural question arises whether or not this method could

be applied to the proof of renormalizability of the topologically massive gravity. We wish

to clarify this problem in a future publication.
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